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Abstract

The interactive programming (IP) using aspiration levels is a well-known methoxd
applied o multi-criteria decision making under certainty (M-DMC), However, some
essential analogies between M-DMC and scenario-based one-criterion decision mak-
ing under uncertainty (1-DMU) have been recently revealed in the literature. These
observations give the opportunity 1o adjust the IP to a totaly new issue. The goal of
the paper is 1o create two novel peocedures for uncertain problems on the basis of the
IP ideas: the first one for pure strategy searching and the second for mixed strategy
searching. In many ways. they allow a better consideration of the decision maker’s
preferences than classical decision rules. One of their significant advantages consists
in analyzing particular scenarios sequentially. Another strong point is that the new pro-
cedures can be used by any kind of decision makers (optimists, moderate, pessimists).
The new approaches may be helpful when solving problems under uncertainty with
partially known probabilities. Both methods are illustrated in the paper on the basis
of two fictitious decision problems concerning the choice of an optimal location and
the optimization of the stock portfolio structure.

Keywords Onc-criterion and multi-criteria optimization - Decision making under
certainty and uncertainty - Interactive programming with aspiration levels - Scenario
planning - Analogics - Portfolio oplimization

1 Introduction

The goal of the paper is to present two novel methods for uncertain problems on the
basis of the interactive programming (IP) ideas. The IP is one of the approaches applied
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to multi-criteria decision making under certainty (M-DMC). This type of optimization
is related to the sitvation where the decision maker (DM) assesses particular decision
variants (alteratives. options, courses of action) in terms of more than one criterion
and all the parameters of the problem are deterministic.

The IP is successfully used in discrete and continuous of M-DMC. The discrete
version is called Multiple Attribute Decision Problems (MADP). In MADP the num-
ber of possible courses of action is precisely defined at the beginning of the decision
making process and the levels of analyzed attributes are assigned to cach decision
variant (Singh et al. 2020). The continuous version of M-DMC is related to Multiple
Objective Decision Problems (MODP). Within MODP the cardinality of the set of
potential options is not exactly known. The DM only knows the mathematical opti-
mization model, i.e., the sel of objective Tunclions and constraints that create the scl
of possible solutions (Ding et al. 2016; Tzeng and Huang 2011). In this paper we
investigate both cases (MADP and MODP),

So far, the 1P has been used in multi-critena problems: initially—under certainty
(Nakayama 1995; Stewart 1999) and later-under uncertainty (Tehhem et al, 1986: Yano
2017) as well, Nevertheless. some evident analogies between multi-criteria decision
making with deterministic parameters (M-DMC) and scenario-based one-criterion
decision making under uncertainty (1-DMU) have been recently revealed in the liter-
ature (Gaspars-Wieloch 20204, 2021a, 2022), These ohservations give the possibility
to extend the current applications range of IP and to adjust the IP to an entirely new
domain-the uncertain optimization with one criterion.

The IP in M-DMC consists in analysing objectives iteratively according to a pre-
established order while the IP in [-DMU means an iterative scenario analysis where
the sequence of considered scenarios is supposed to be defined as well. Such aconcept
differs significantly from existing decision rules designed for 1-DMU, but the novel
idea opens new opportunities especially in the case of uncertain problems with partially
known probabilitics. The main advantage of the suggested approach is its Aexibility.

The paper contains a description of two procedures. The first one is designed for pure
strategy scarching and is based on the discrete integer programming. Pure strategics
are connected with situations where the DM selects and executes only one option. The
second method is designed for mixed strategy searching and refers to the continvous
integer programming. Mixed strategics are combinations of several options, They are
especially common in portfolio construction and cultivation of different plants,

The paper is organized as follows, Section 2 describes the original version of
the IP. The emphasis is put on IP hased on aspiration levels since this variely is
directly used 1o develop analogical decision rules for 1-DMU, Section 3 presents
the analogies between multi-criteria optimization with deterministic parameters and
scenario-based one-criterion optimization with indeterministic parameters. Section 4
describes two new procedures: TP for uncertain pure strategy searching and [P for
uncertain mixed strategy searching. The first method has been already briefly pre-
sented in (Gaspars-Wieloch 2021b). but it certainly requires a more complex analysis.
while the description of the second aforementioned method has never been published.
Section 5 uses two illustrative examples to show how the novel approaches may be
applied to indicate the optimal pure and mixed strategy. Conclusions concerning the
suggested procedures are gathered in the last section.

£ Springer



Possibe new applications of the interactive programming based .

2 Interactive programming with aspiration levels

The interactive programming is regarded as a multi-criteria reduction technique (Peitz
and Dellnitz 201 8). which means that it does not compute the entire set of optimal com-
promises. but instead interactively explores the Pareto set. One of the main advantages
of interactive methods is the reduced computational effort, especially in the presence
of many criteria, since it is not affected significantly by the dimension of the Parcto
set.»In contrast to a priori and a posteriori methods, in an interactive multiobjective
optimization method, the DM specifies preferences progressively during the solution
process to guide the scarch towards histher preferred regions. (...) Only one or a
smill set of solutions which the DM is interested in is found. Thus the computational
complexity is reduced and the DM does not need 1o compare many non-dominated
solutions simultancously.« (Xin et al. 2018). However, itis worth underlining that this
characteristic signifies that in the case of the [P approaches applied 1o the discrete
version of M-DMC the generation of a ranking consisting of all the oplions is rather
impossible,

There are numerous varieties of 1P programming techniques designed for multi-
ple objective decision making (Stewart 1999), but in the paper we examine only one
IP algorithm. Shin and Ravindran (1991) have divided 1P methods into the follow-
ing groups: branch-and-bound methods, feasible region reduction methods. feasible
direction methods, Lagrange multiplier methods, visual interactive methods using
aspiration levels, criterion weight space methods. trade-off cutting plane methods, but
within the Last 30 years other approaches have been developed. They are discussed for
instance in (Jaszkiewicz and Branke 2008: Peitz and Dellnitz 2018: Xin et al. 2018).
In the article we investigate the concept related to the feasible region reduction. Addi-
tionally. Ravindran (2008) distinguishes diverse interaction styles used in [P, such as
the precise local trade-off ratio, interval trade-off ratio. comparative trade-off ratio.
index specification and value trade-off, binary pairwise comparison, vector compari-
son, but here we concentrate on IP based on so-called aspiration levels. This tool has
three essential advantages (Nakayama 1995): (1)»1t does not require any consistency
of the DM’s judgement, (2) It reflects the wish of the DM very well, (3) It plays the
role of probe better than the weight for objective functions.«

The discrete 1P algorithm explored here consists of the following steps:

1. Define the sct of altematives A = [A)....,A;.....,Ay ] where n is the number of
decision varianls,

Define the set of criteria C = {Cy,....Cy.....Cp | where pis the number of criteria,
Generate the payolf matrix (see Table 1, Sect, 3) where by j represents the perfor-
mance of criterion Ci il option A; is selected.

Choose the first eriterion 1o be analyzed (! = 1),

Normalize the initial values connected with the first eriterion (! = 1) according 1o

Eq. (1).
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6. Sclect the decision variants satisfying the first objective according to the normal-
ized aspiration level declared by the DM {(AL)).

7. Move to criterion | = 2 (subsequent clements of the objective sequence are estab-
lished iteratively by the DM), normalize its values only for the reduced sct of
options (A') and sclect decision variants fulfilling AL2. Follow the same proce-
dure for criteria l = 3,...p-1.

8. Select from the current reduced set of allematives (i.c. A" ') the option (or set of
oplions) performing the best criterion [ = p. That is the compromise solution,

Nole that there is no need to normalize all the data in step 5 since after cach iteration
the set ol possible options changes and when it changes, maximum and minimum
vilues within a given criterion may vary as well, Of course, the normalization is only
required if the objectives are expressed in dilferent units and/or scales. I each initial
value has to be transformed into a performance degree, it means that the aspiration
levels also must be normalized. When the normalization is nol necessary. we say thal
a given variant satisfies the aspiration level if its value is not lower than AL (case of
maximized criterion) or not higher than this parameter (case of minimized criterion),
When the normalization is applied, normalized values should be always not lower than
the normalized aspiration level (irrespective of the criterion optimization type).

As it has been mentioned in Sect. 1, the IP may support MODP as well. In this case
the optimal solution is generated by means of an optimization model.

The continuous IP algorithm with aspiration levels involves the following steps:

1. Define the decision variables xy, ... X, .... Xy. They represent the share of a given
altemative in the whole mixed strategy.
2. Define the set of criteria C = [C).....Cy.....Cp} and their objective functions

S0, oo felx), . fplx).
3. Formulate constraints connected with the decision problem:

x;€SFS j=1.....n (2)

=20 j=1,....n (3)

i;‘, =1 (4)
=1
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where SFS' denotes the set of feasible solutions. Thus, Eq. (2) concems all the
conditions additionally formulated by the DM.

4. Establish iteratively the sequence of the analyzed criterin Seg =
(C(1)....C(1.....C(r)) where t = p.

5. Declare iteratively the aspiration levels as normalized values: AL(L), ... AL(.....
AL(r-1).

6. Solve the optimization model (2)-(6):

fen(x) — min / max (5)

gomlx) = AL (6)

where ge(x) denotes the normalized value of criterion Cy and is computed accord-
ing to formula (7).

ft (x) ~ ftmln{-")

- for maximized criteria
f*ﬁl\‘x ’ - ji“'" (I) ' ¢

(x)= (7
- L) = fulx) L .
— — for minimized critenia
[k (x) — f& (x)
7. Solve the optimization model (2), (3) and (4), (6) and (8). (7) and (9):
fey(x) — min / max (8)
gom ) = AL2) 9

where geyzy(x) is calculated on the basis of the maximum and minimum value of
function fe2,(x) obtained after solving model (2), (3), (4), (5) and (6).

8. Follow the same procedure for criteria C(3),....C(1-1) using Egs. (2), (3) and (4)
and (10)and (11).

fewy(x) = min / max (10)

goay(x) = ALY ... gog-n(x) = AL = 1) (1)

When solving the last optimization model (i.e. in the case where criterion C(/) is
optimized) there is no need 10 search both the maximal and minimal function value,
It suffices 1o apply the direction of optimization desired by the DM. The result is the
compromise solution,

As we can observe, similas 1o 1P for MADP, within IP for MODP the maximum and
minimum critena values are regularly updated. which means that for each subsequent
optimization model the final set of feasible solutions (SFS) is smaller and smaller.

Steps 4 and 3 require a broader comment. The expression “iteratively™ means that
there is no need to declare the whole sequence of criteria and all the aspiration levels at
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the beginning of the decision making process. These data may be defined successively
after solving a given optimization model. The iterative approach has two essential
advantages. First, it gives the DM the possibility to control the search of the solution
and to express his/her expectations at every stage of the process. Second. it protects
the DM from formulating a contradictory optimization problem without any feasible
solution.

It is worth emphasizing that usually the decision variables need to be non-negative
[Eq. (3)]. but in some specific situations this constraint is redundant {e.g. portfolio
construction with short sale).

3 Comparative analysis of M-DMC and 1-DMU

We will see that the structure of multi-critena optimization under certainty is extremely
similar to the structure of the scenario-based |-criterion optimization under uncer-
tainty. This observation has been made for the first time by the author of this paper in
Gaspars-Wieloch (2020k, 2021a). Here we are reminding the main conclusions, M-
DMC is connected with cases where the decision maker evaluates particular options in
terms of many criteria (ic. at least two). Under certainty™ means that the parameters
of the problem are supposed to be known. The second area refers to situations in which
the DM assesses a given course of action on the basis of only one objective function,
but, for instance due to numerous unknown future factors, the problem data are not
deterministic. Instead of that a set of potential scenarios is available. These scenarios
may be suggested by experts, decision makers or by someone who is both an expert
and a DM. “Scenario™ means a possible way in which the future might unfold.
There are diverse uncertainty levels (Courtney et al. 1997: Waters 2011):

~ uncertainty with known probabilities (the DM knows the alternatives, scenarios and
their likelihood),

— uncertainty with partially known probabilities (the DM knows the altematives. sce-
narios. but the probability of their occurrence is not exactly known-it may be given
as intervals or scenarios can be ordered from the most to the least probable).

— uncertainty with unknown probabilities (the DM knows the alternatives and scenar-
ios, but has no knowledge on their probabilitics).

— uncertainty with unknown scenarios (the DM knows possible alternatives only).

In this research we focus on uncertainty with partially known probabilities. Uncer-
tainty may be modelled in diverse ways, but here we refer 1o scenario planning (SP)
since itis a very comtortable tool-it does not require sophisticated mathematical skills,
soitean be used both by researchers and managers (i.e, theoreticians and practitioners),
Furthermore. within SP the set of scenarios does not need 10 be exhaustive,

The payoll matrix representing M-DMC is given in Table | where s-number of
alternatives, p-number of criteria, by —performance of criterion Cy if option A; is
selected.

On the other hand, Table 2 shows the payoff matrix for scenario-based 1-DMU:
m—-number of scenarios. a; j—payolf obtained if option A; is selected and scenario §;
oceurs.
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Table 1 Payodf matrix for M-DMC

Criteria Altermatines

A' e A] _ An
< by b bia
Gy by ‘as by asa bya
Cyp hp.l . h'q’ . pa

Sowrve Gaspars-Wickoch 20214

Table 2 Payod! matrix for 1-DMU

Scenarios Alternatives

Ay o A An
5 apl e 0l ver e
5 '] . . in
Sm [ L T ves Oma

Sowrce Gaspars- Wichoch 2021

Payoffs in Tables 1 and 2 may represent efficiencies, profits, revenues, profitability,
sale volumes ete.

Indeed, we state without a doubt that similaritics between both tables are highly
visible—payoff matrices are almost analogous, In both cases there is a set of potential
alternatives and the sct of objectives in M-DMC can correspond Lo the set of scenarios
in 1-DMU. In Gaspars-Wicloch (2022) another significant analogy is discussed-in
both issues the discrete and continuous version can be investigated, which means thal
the pure and mixed strategy searching is possible. Itis worth underlining that without
the use of scenario planning as an uncertainty modelling ool the identification of some
analogies between M-DMC and 1-DMU would not be possible.

A comparative analysis involves not only similaritses, but also differences. The first
discrepancy is as follows. Within 1-DMU, il A; is chosen, the final outcome (a;;)
is single and depends on the real scenario which will occur. Within M-DMC, if Af
is selected. there are p final payofls, i.e. by . ... by . ..., by, because the decision
variants are assessed in terms of p essential objectives. Second, in the case of M-
DMC initial values usually have to be normalized as they represent the performance
of diverse criteria. In 1-DMU the problem is related to one objective. That is why the
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normalization is redundant. The observed discrepancies do not cancel the opportunity
to develop new procedures for [-DMU on the basis of methods already invented for
M-DMC. Nevertheless, the existence of the aforementioned differences should be
certainly taken into account in Sect. 4.

4 Two interactive decision rules for 1-DMU

The observed analogies give us the possibility to adjust the [P 1o a totally new area, ic.
o scenario-based one-criterion oplimization under uncertainty with partially known
probabilities, In the previous section we have mentioned that this uncertainty degree is
usually related 1o a decision situation where the probability is given as interval values
(instead of punctual ones) or where the DM is able to order scenarios from the most
to the least probable. In this research we assume that the decision maker can declare
the order.

Let us start with the construction of the algorithm for pure strategy searching. From
the technical point of view. the methodology is similar, but the interpretation is going
to be different. The Interactive Decision Rule for one-criterion uncertain peoblems and
pure strategies may consist of the following steps (IDR(P)):

1. Define the set of options A = [Ay,....A;,....A, | where o is the number of alterna-

lives,

2. Define the set of scenarios S = {§.....5,...,54 | where mr is the number of sce-
nanios,

3. Generate the pavolf matrix (see Table 2, Sect. 3),

4. Choose the scenario with the highest subjective chance of occurrence (/= 1),

5. Find set A', ie. select the aliematives satistying ALy, i.e, the aspiration level

declared for the aforementioned scenario by the DM,

6. Move 1o scenario | = 2 (subsequent elements of the scenario sequence are estab-
lished iteratively by the DM). and select alternatives fulfilling AL from set A'.
Follow the same procedure for scenarios /= 3.....m-1.

7. Select from the current reduced set of alternatives (i.e. A™ ') the option (or set of
options) with the best payoff value within scenario { = m. That is the optimal pure
strategy.

Let us briefly discuss the features of IDR(P).

First, when analysing the structure of the suggested algorithm, indeed, we can
notice that the normalization step is not required, since the data representing payolls
are connected with only one criterion,

Second, within M-DMC, the order of criteria is determined by the subjective objec-
tive importance, while within 1-DMU with partially known probabilities the order of
scenarios depends on their subjective chance of occurrence which is closely linked 1o
the DM’s attitude towards risk, i.e, his or her state of mind and soul,

Third, in IDR(P) the aspiration level has got a different interpretation than is the case
of the original IP. In M-DMC parameters AL are used to declare the decision maker’s
requirements. He or she expects at Jeast this level within a considered criterion. On
the other hand, in [-DMU diverse parameters AL are applied for particular scenarios
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since the payoff ranges related to cach scenario may be diverse. Additionally. some
scenarios can offer really unfavourable results and that is why in such cases the DM’s
expectations should be lower. Of course, sometimes, if the payofl ranges are similar.
parameters AL; may be the same for cach scenario since all the results are related to
the same objective.

In the second part of this section the algorithm for mixed strategy searching will
be developed. The Interactive Decision Rule for one-criterion uncertain problems and
mixed strategics may consist of the following steps (IDR(M)):

1. Define the decision variables xy. ... x;, ..., X,

2. Define the set of scenarios § = [8).....5,.....55 and the coefficients of their
objective functions £ (x), ..., fi(xh .. fwlX)
3. Formulate constraints connected with the decision problem:
x;eSFS j=1,...n (12)
=0 jml,....n (13)

N
i=1

where SFS” denotes the set of feasible solutions. Thus, Eq. (12) concems all the
conditions additionally formulated by the DM,

4. Establish iteratively the sequence of the analyzed scenarios Seq =
(SCn,...S0),....S() where 1 = p,

5. Declare iteratively the aspiration levels: AL(1), ..., ALU)...., AL{r-1).

6. Solve the optimization model (12)-(16):

SFs2y(x) < max / min (15)
Fsaplx) = AL (16)
7. Solve the optimization model (12)-(14), (16) and (17)-(18):
Ssedx) = min /max (17)
SFsiap(x) = AL(2) (18)

where AL(2) is determined after solving the model (12)-(16) and finding the max-
imum and minimum possible value of function fg2,(x).

8. Follow the same procedure for scenarios S(3),....50-1) using Egs. (12),(13), (14)
and (19) and (20),

Fsiy(x) — min / max (19)
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Fsondx) = AL(1): .5 fsg-n(x) = AL = 1) (20)

When solving the last optimization mexdel (i.c. in the case where function [, is
optimized) there is no need to search both the maximum and minimum lunction value.
It suffices 1o apply the direction of optimization desired by the DM. The resull is the
optimal mixed sirategy.

In the description of the algorithm we have assumed in Eqs, (16). (18), (20) that the
analysed criteria were maximized. However, if a minimized objective is investigated,
then the ineguality symbol in constraints (16), (18) and (20) ought 10 be reversed,

Similarly 1o the IP for M-DMC, the novel interactive approach for mixed strategies
does not require non-negative decision variables in each case. In portfolio optimization
with shoet sale this constraint is omitted.

Again, we see that within IDR(M). the normalization is not necessary, which can
be regarded as a significant advantage—the procedure is less time-consuming than the
original IP for continuous multi-criteria optimization.

5 Examples

Let us discuss two simple illustrative examples in order to analyse the essence of the
proposed procedures,

We start with the use of IDR(P) for the following problem. We assume that the
managing director of i company is searching an attractive location for a social event
which is going 1o be held on a 15 May 202X (five potential places, step 1), The
company tends to select the place according 1o the number of participants (the criterion
is maximized), but this number depends on diverse factors, Therefore the company
considers six possible scenanios (step 2), They are quite different as numerous diverse
aspects have been taken into account, Necessary data conceming the expected number
of participants are gathered in Table 3 (step 3). The figures have been estimated by
three experts. The degree of uncertainty is rather high as the social event will be held
in seven months and such events haven’t been organized by the firm before, so the
managing director is only able to establish a sequence of scenarios. i.e. to order the

Table 3 Payofl matrix [example 1-TDR(P)]

Scenarnios Allematives

Ay Az As Ay As
5 &N 4000 400 600 Q
S M) 2800 2000 AN 250
S 0 K500 13.000 1500 12,0
Sy 800 2 GO0 800 1000
Sy 500 Ly 0 1K) «am
Se 3000 T80 S000 1000 100

Sowrve prepared by the authoe
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scenarios from the most to the keast probable. His opinion mainly relies on subjective
predictions and assumptions.

The decision maker sets the following scenario order: (S5, S5, 57, 51, 84, 53). which
means that the scenario with the highest subjective chance of occurrence is Sg (step
4). The aspiration level (declared subjectively by the managing director) for the first
considered scenario is equal to AL(Sg) = 1000, which means that set A' = [A,.
Az, Aa, Ay), step 5 (option As is removed because 100 < 1000). Within step 6 we
perform the same procedure for scenarios Ss. Sz, Sy and S4. The DM has noticed
that the payoff range connected with scenario Ss is narrower and lower than it was
for scenario Sg. Therefore, he will be satisfied with a number of participants equal
to at least AL2(Ss) = 400, This condition is not met by alternative A3, thus A° =
(A1, Az, Ag}. Scenario Sz is quile favourable, so the managing director, in this case,
would be satisfied with 3000 participants: AL3(S2) = 3000, which entails another
reduction of the sel of allernatives: A* = [A}, As ). For scenarios S; and Sy the options
from A* have the same values (6000 = 6000 and 800 = 800), so the declaration of
aspiration levels ALg(S;) and ALs(S4) is quite unusual—if the DM defines a level
lower than the expected numbers, both locations will still belong to the set: if the DM
determines a level exceeding the expected numbers, both locations will be excluded
and the managing director will not be able to indicate the best solution. Thus, let us
assume that the DM intends 10 examine all the remaining scenarios and that is why
he declares the following conditions: ALy(Sy) = 6000 and AL:(S4) = 800. With such
preferences the reduced set remains the same: A* = A* = A% = [A,. A;). Now, we
can move o step 7 since scenario Sy is the last to consider. Within set AS location Ay
is related to a larger number of participants (1500 > 0) than location A;. Therefore
the managing director should select the fourth location (A4)-this is the optimal pure
strategy recommended by IDR(P).

We can compare the IDR(P) solutions with existing classical decision rules
recommendations. The basics of these procedures are explained for instance in
Gaspars-Wicloch (2020b, 2021a):

- For the Bayes rule (designed for multi-shot decisions) A is the best.

- For the Wald rule (designed for one-shot decisions and extreme pessimists)-As.

- According to the max-max rule (designed for one-shot decisions and extreme
optimists) Ay should be chosen.

- The Hurwicz rule (designed for one-shot decisions and only based on extreme
payolls) indicates: Az for high, mid and low optimism coellicient values: Az for very
low optimism values and Ay for extreme pessimists,

- The Savage rule (designed for one-shot decisions and analysing the position of
a given payoll within the remaining scenario outcomes; recommended to extreme
pessimists, based on relative losses) suggests Az,

- The Hayashi rule (designed for one-shot decisions and analysing the position
of @& given payoff within the remaining scenano owlcomes: recommended (o extreme
pessimists, based on relative profits) treats all the alternatives as equivalent: Ay Az,
Az, Ay and As.

As we can observe, solutions are diverse. but this should not be surpeising since
each decision rule is designed for different purposes and different types of decision
makers. Therefore. a comparison is not justified.
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Table 4 Expected moathly rate of retura in % [example 2-1DR(M))

Scemarios Allemalives

Ay A2 Ay Ag As An A7
5 [ -2 14 14 7 0 -12
5, 7 - 10 5 8 0 0 -3
5 - 10 -9 4 - 14 12 - 40 40
54 -1 Jl 6 -3 - 10 - &0 23

Soweve prepancd by the authoe

Now let us explore the decision problem concerning mixed sirategy searching and
test IDR(M). We assume that the investor is interested in creating a stock portfolio
without shoet sale, He considers 7 potential companies (A -A7) and wants 1o maximize
the total monthly rate of retum. Thus, the optimization model will contain seven deci-
ston varables (step 1). According to experts four essential scenarios (8,-54) should
be taken into account (step 2), but neither the experts nor the decision maker are able
to estimate the probability of occurrence. The investor can only order the scenarios
from the most to the least probable. Table 4 repeesents the expected monthly rates of
retum.

Let us assume that in the investor’s opinion the share of cach company in the
portfolio should not exceed 20/% and that share Ag ought to be not higher than share
A3 (the losses connected with Ag are the most severe, Az is the only company with
positive rates of return, regardless of the scenario). Hence, constraints concerning
shares arc as follows (step 3):

Mto+nt+u+styg+o=I1 21)
0 < xy. X2, X3, X4, X5, Xg, X7 = 0.2 22)
X6 < X3 (23)

The investor is not able to estimate the probability of occurrence of each scenario.
but he thinks that scenario Sy is the most probable (this scenario has the lowest average
of rates of return and a quite high standard deviation). S4 is a litthe less probable than
S1(S4 has a higher average of payoffs, but its standard deviation is also higher), step
4. Within step 5 the investor is supposed to declare the aspiration level for the first
scenario from the sequence, c.g. AL (S3) = 7%. Now the first optimization model
may be solved (step 6)-it consists of Eqs. (21), (22). (23), (24) and (25).

—11x) + 3lxs + 6xs — 3y — Hvs — 50xs + 2587 — max / min (24)
—10x; — 9xp + 4rxy — ldxg + 1205 — d0xg + 40x; = 7 (25)
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The maximum and minimum value of the current objective function is equal to 9%
and 5.48%, respectively. This information will allow the investor to declare a rational
aspiration level for the second scenario from the sequence: AL (S5) = 6%. According
to the investor, scenario S; is a litthe less likely than scenario Ss, which means that S;
is the third element in the sequence (step 7). The second optimization model to solve
contains Egs. (21), (22) and (23) and (25), (26) and (27).

Txy — 10x2 + 5xy + 8xg + Oxs + 30y — 307 — max / min (26)

wllxy 4 31x2 4 6x3 — 3xg ~ 10xs — S0x5 4+ 2507 = 6 27)

The maximum and minimum value of the new objective function is equal to 1.0M2%
and — 0.2%. respectively. This information will allow the investor to declare a rational
aspiration level for the third scenario from the sequence: AL (S;) = 1%, According
to the investor, scenario Sy is the least probable, thus—S is the last clement in the
sequence. The third optimization model to solve contains Egs. (21), (22), (23). (25).
(27) and (28),(29), step 8.

61 — 2x2 + 1dxy + Mg + Tas + 200 — 1207 — max (28)

Txp = 10x2 4 Sx3 4+ 8xy + Oxs 4+ 30xg — 307 = | (29)

The optimal solution is x; = 085, xp = 0132, x3 = 0200, x4 = 0.083, x5 =
0200, x5 = 0.0, x7 = 0.2(6). The shares repeesent the best mixed strategy obtained
by means of IDR(M) and on the basis of the DM’s preferences. The maximal expected
rate of retum for scenario S) is equal to 3.809%. In such a case the expected rate
of return for the remaining scenarios equals 1.042% (for scenario S;). 7.0005% (for
scenario S3) and 6.000% (for scenario Sy).

As we certainly noticed our investor is rather a pessimist decision maker, but
IDR(M) can be applied by any kind of people, so the investor could start with a scenario
with a relatively high average of payofts and relatively low standard deviation.

Let us assume that in connection with the fact that some expected rates of return
are negative, the investor decides to find the optimal mixed strategy where the short
sale is possible. Within the short sale the investor sells assets or stocks that he does
not own, They are borrowed in anticipation of a price decline. The seller is then
supposed Lo retum an equal number of shares al some point in the future. The use of
the shorl sale entails the necessity 1o replace constraint (22) with condition (30), In
such circumstances the decision variables do not need 10 be non-negative,

=0.2 = 11, X2, X3, X3, X5, X6, X7 = 0.2 (30)
If we assume that the investor still intends to apply the sequence Seq = (53, 4.
S2. §1). the first model 1o solve consists of Egs. (21). (23), (24), (25), (30). The first

optimal solution is: xy = 0.200, xy = 0.200, x3 = 0.200. x5 = 0.200, xs = 0.200, x4
= 0200 x7 = 0.200. Hence. the short sale would be applied to share Ag.
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The maximum and minimum value of the current objective function is equal to
17.6% and 2.97%. respectively. This information allows the investor to declare a
rational aspiration level for the second scenario from the sequence, but here we main-
tain the value set before, i.e. AL2(S4) = 6%. The second optimization model to solve
contains Eqgs. (21), (23), (25), (26). (27), (30).

The maximum and minimum value of the new objective function is equal to 1.45%
and — 4,6%, respectively. We assume that ALz(S;) = 1.O42%. Why is it a modified
aspiration level (compared to the aspiration level used in the case without short sale)?
The answer is as follows: if the final expected rate of return for scenario Sz in the
optimal solution with non-negative shares is equal to 1.042%, it means that we can try
to get such a result with the short sale as well. The third optimization model o solve
contains Eqs. (21), (23), (25), (27) and (28), (29), (30), but the coeflicient 1 needs 1o
be replaced with 1.042 in Eq, (29).

The optimal solution is xy = 0.199, 13 = 0078, x5 = 0.200, xq = 0,200, x5 =
0.200, xg = 0,055, xy = 0,178. The shares represent the best mixed strategy obtained
by means of IDR(M) on the assumption that the short sake is possible, The maximal
expected rate of retum for scenario Sy is equal 10 4,.814%, In such a case the expected
rale of return for the remaining scenanios equals 1042% (for scenanio Sy ). 70006
(tor scenano S and 6,00046 (for scenanio Sy ).

Hence. thanks 1o the short sale, an improviment was possible, If the investor borrow
the shares of company Ay (5.5% of the initial investor's capital) and sells them foe
one month, his total capital will increase by 5.5%. According to data from Table 4.
after adding the short sale. the expected monthly rates of return will be the same for
scenarios Sp, Sy and Sy, but this measure will improve for scenario Sy (from 3.8300%
to 4.814%). Of course, we must be aware of the fact that the short sale usually entails
additional costs (loan costs and supplementary transaction costs), which means that in
real problems the difference between the rate of retum without short sale and the rate
of return with short sale is affected by the aforementioned expenses. Neverthelless,
it is worth stressing that formulas (22) and (30) had also a strong impact on the final
results. If there were no share limitations, the possibilities to increase the rate of return
would be greater in both cases.

Equation (14) in IDR(M) indicates that the decision maker is allowed to define
numerous additional constraints. In the analysed portfolio example (with and without
short sale) they can be connected with the relationships between particular shares, but
they can also concem lor instance the accepted nisk level.

6 Discussion and conclusions
The goal of this paper was to:

~ Explain in detail the IDR(P), i.c. the interactive decision rule for pure strategics:
~ Develop IDR{M), i.c. the interactive decision rule for mixed strategies.

The first method has been already presented in Gaspars-Wieloch (2021b), but here
the description was broader and more precise.
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The second procedure has never been formulated betore, but is vital, since it allows
the DM to generate solutions being a weighted combination of numerous altematives.
Such recommendations are especially desired in the optimal investment portfolio con-
struction.

Both decision rules have been developed thanks to the author's observation
(Gaspars-Wicloch 202 1a) connected with the analogy between two different issues: the
multi-criteria optimization under certainty and the one-criterion optimization under
uncertainty. The creation of two new procedures for 1-DMU were possible thanks
to the existence of two almost analogous methods applied to M-DMC. “The novel
interactive decision rules (IDR) are technically very similar to the initial ones, but
the interpretation of particular steps is often different. Within the original [P criteria
are ordered according Lo their importance while within the suggested approaches the
scenario sequence is established on the hasis of the subjective chance of occurrence™.
(Gaspars-Wicloch 2021b),

Now, let us discuss several aspects related to the analysed topic,

(1) IDR(P)is designed for pure strategies while IDR(M) is designed for mixed strate-
gies, but note that if we apply binary decision variables in the optimization model
used in IDR(M) we will oblain the same optimal solution as we would oblain
when using IDR(P). Such a relationship is due to the fact that IDR(M) 15 actually
a generalization of IDR(P). Nevertheless, even if IDR(M) could solve any prob-
lem, it is recommended to apply IDR(P) when a pure strategy is sought. because
the IDR(M) methodology is more time-consuming.

(2) It is worth stressing that both presented decision rules are designed for one-shot
decisions, i.e. for decisions performed only once. “If the DM considers executing
one of the analysed alternatives in the future, it is advised to follow the procedure
one more time, because the decision maker’s attitude towards the problem may
change as time goes on™. (Gaspars-Wicloch 2021h).

3)  The proposed procedures should not be compared with classical decision rules
because each technique is based on different assumptions which result from dif-
ferent DM's needs, goals, predictions and states of soul/mind.

(4) “Sometimes the IP for multiple criteria problems is used under the assumption
that all the aspiration levels are declared at the beginning of the decision making
process, Such a possibility also exists in the case of 1-criterion uncertain problems,
but note that under such circumstances the solved problem may have an emply
feasible region, That is why it is recommended to estimale the aspiration levels
sequentially in both analogical techniques™ (Gaspar-Wicloch 2021b).

(5) The paper focuses on maximized (and minimized) eriteria, but real problems often
contain neutral criteria, i.¢, objectives within which the decision maker tends 1o
reach a specified value or interval. This case has not been discussed in the article.
but the formulated algorithms can be easily modified for that purpose,

IDR(P) and IDR(M) have some significant advantages. First. they do not require
the use of precise probabilities—it is quite important, since in the case of decisions
made in turbulent times and in the case of innovative or innovation projects the prob-
ability estimation may be rather complicated. Second. both procedures do not require
the payoll normalization. Third. they can be applied by any kind of decision maker
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(optimism, pessimist. moderate) since cach decision maker is allowed to define the
scenario sequence and aspiration levels individually. Fourth, it gives the possibility
to sequentially analyse scenarios while classical decision rules assume that the whole
information on the DM’s preferences is declared at the beginning of the decision
making process. Thus, IDRs are definitely more flexible.

In the future it would be desirable to investigate the possibilities to adjust the initial
multiple-criteria IP to multi-criteria decision making under uncertainty. Approaches
for that arca are already described in the literature (Klein et al. 1990; Nowak ctal. 2021;
Ozceylan and Paksoy 2014 Tehhem et al. 1986: Yano 2017), but the author's intention
is to maintain the interactive character for scenarios, not for criteria. So, would it be
possible to examine numerous objectives, cach one described by a separate scenario
planning matrix, and lind a compromise solution assuming that the decision maker
can analyse the scenarios according to a pre-established order connected with the
subjective chance of occurrence?
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