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Recent Visits to UC Berkeley

Simons Institute for the Theory of Computing, Fall 2022

– Graph Limits and Processes on Networks: From Epidemics to
Misinformation

– Data-Driven Decision Processes
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Working hard....or hardly working?
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Recent Visits to UC Berkeley

Simons Laufer Mathematical Sciences Institute, Fall 2023

– Algorithms, Fairness, and Equity

– Market and Mechanism Design (?)
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Market and Mechanism Design

Many economists, game theorists, including:

– Paul Milgrom (Stanford), 2020 Nobel Memorial Prize in
Economic Sciences “for improvements to auction theory and
inventions of new auction formats.”

– Alvin Roth (Stanford), 2012 Nobel Memorial Prize in
Economic Sciences “for the theory of stable allocations and the
practice of market design."
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Market and Mechanism Design

I started three projects with this group:

– Maximizing Trades in Random Markets
(Nick Arnosti, Alan Frieze)

– Zero-intelligence Traders on a Random Network
(Nick Arnosti, Bogumil Kaminski, Mateusz Zawisza)

– Random Matching Markets
(Simon Mauras and Adrian Vetta)
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Stable Matchings



Definition – Matching

– Collection D of “doctors” and Hof “hospitals”.

– Each doctor 𝑑 ∈ Dhas a set of preferences over all hospitals
H, represented (partial) list ordered from most preferred to
least preferred, and vice-versa.
(Partial as some hospitals are “unacceptable” match to 𝑑.)

– A matching is a set of vertex disjoint edges in the complete
bipartite graph on D∪ H:

𝜇 : D∪ H→ D∪ H∪ {∅};

𝜇(𝑥) = ∅ if agent 𝑥 is unmatched.
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Definition – Stable Matching

– For a fixed set of preferences, matching 𝜇 is stable if there
does not exist a pair (𝑑, ℎ) ∈ D× H such that:

a) doctor 𝑑 is not matched to hospital ℎ,
b) doctor 𝑑 prefers ℎ more than 𝜇(𝑑),
c) hospital ℎ prefers 𝑑 more than 𝜇(ℎ).

– A pair (𝑑, ℎ) is called stable for a fixed set of preferences if
𝜇(𝑑) = ℎ in some stable matching.

– The canonical method of finding some stable matching is the
one-side-proposing deferred acceptance algorithm.

– DPDA — Doctor-proposing deferred acceptance algorithm.
– HPDA — Hospital-proposing deferred acceptance algorithm.
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Definition – Doctor-proposing Algorithm (DPDA)

Do the following as long as there are some unmatched doctors
and at least one of them has not proposed to every hospital:

– pick any such doctor 𝑑,

– 𝑑 “proposes” to their favourite hospital ℎ which they have not
yet proposed to,

– if ℎ likes 𝑑 more than 𝜇(ℎ), then ℎ “accepts” 𝑑’s proposal
(𝜇(ℎ) = 𝑑 and 𝜇(𝑑) = ℎ).
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Definition – Doctor-proposing Algorithm

Theorem (Gale, Shapley, 1962)
– DPDA always computes a stable matching 𝜇0.

– Moreover, this is the doctor-optimal stable outcome (that is, every
doctor is matched in 𝜇0 to their favourite stable partner).
– In particular, the resulting matching is independent of the
execution order.
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Definition – Doctor-proposing Algorithm

Theorem (Roth, 1986 (Rural Hospital Theorem))
For any set of preferences, the set of unmatched agents is the same
across every stable outcome.
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Applications

Applications in a variety of real-world situations:

– assignment of graduating medical students to their first
hospital appointments (best known),

– . . .

– assigning users to servers in a large distributed internet
service.
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Recognition

– In 2012, the Nobel Memorial Prize in Economic Sciences was
awarded to Shapley and Roth “for the theory of stable
allocations and the practice of market design.”

– . . .

– In 2007, the Nobel Memorial Prize in Economic Sciences was
awarded to Hurwicz “for having laid the foundations of
mechanism design theory.”
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Random Preference Lists

– In this talk, we are interested in uniformly random complete
preference lists.

– That is, each doctor 𝑑 ∈ Dhas one of the |H|! possible
preference rankings of all the hospitals, chosen uniformly at
random.

– Similar property holds for each hospital ℎ ∈ H.

– Sounds not so realistic? Surprisingly, it applies to many
important scenarios.
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Balanced Case



Definition – Balanced Case

– 𝑛 hospitals;
each hospital ℎ has a random preference of doctors.

– 𝑛 doctors;
each doctor 𝑑 has a random preference of hospitals.

– rank(𝑑): the rank of a doctor 𝑑 (matched to a hospital ℎ) is the
index of ℎ on 𝑑’s preference list (where lower is better).

– rank(ℎ): the rank of a hospital ℎ (matched to a doctor 𝑑) is
defined analogously.
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Results – Balanced Case

Theorem (Wilson, 1972)
In doctor-optimal stable matching, for any 𝑑 and ℎ,

𝔼[rank(𝑑)] = 𝑂(log 𝑛) 𝔼[rank(ℎ)] = Ω(𝑛/log 𝑛).

– consider doctor-proposing algorithm (producing
doctor-optimal stable outcome).

– the algorithm behaves essentially as the well-known “coupon
collector” problem.

– the doctors have amnesia.
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Unbalanced Case



Definition – Unbalanced Case

The “Effect of Competition”.

– 𝑛 hospitals;
each hospital ℎ has a random preference of doctors.

– (𝑛 + 1) doctors;
each doctor 𝑑 has a random preference of hospitals.
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Results – Unbalanced Case
Theorem (Wilson, 1972)
In doctor-optimal stable matching, for any 𝑑 and ℎ,

𝔼[rank(𝑑)] = 𝑂(log 𝑛) 𝔼[rank(ℎ)] = Ω(𝑛/log 𝑛).

Theorem (Ashlagi, Kanoria, Leshno, 2017 — Unbalanced)
In every stable matching, for any 𝑑 and ℎ,

𝔼[rank(𝑑)] = Ω(𝑛/log 𝑛) 𝔼[rank(ℎ)] = 𝑂(log 𝑛).

– short proof provided by Cai and Thomas, 2021;
hospital-proposing algorithm with one doctor rejecting all
proposals (“list truncation” technique).

– doctor-proposing algorithm (producing doctor-optimal stable
outcome) is more natural but “unfortunately, this random process
is fairly difficult to analyze (for instance, to get a useful analysis, we’d
need to keep track of which doctor is currently proposing, which
hospitals they have already proposed to, and how likely each hospital is
to accept a new proposal).”
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Proofs



Principle of Deferred Decision

We may defer exposing information about the random
preferences for a given hospital ℎ until a new proposal is made
to ℎ.

----------
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Principle of Deferred Decision

We may defer exposing information about the random
preferences for a given hospital ℎ until a new proposal is made
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Principle of Deferred Decision

– Consider an algorithm in which doctors propose.

– Hospital ℎ is popular if it received at least 𝑘 proposals, where

𝑘 =

⌊
𝑛

5𝑐 log 𝑛

⌋
(𝑐 is a constant, large enough).

– We will stop the algorithm prematurely at time 𝑇 when there
are exactly ⌊𝑐 log 𝑛/4⌋ popular hospitals.

– Of course, the algorithm might converge to a stable matching
before it happens; however, we will show that a.a.s. it will not
happen.

23



Principle of Deferred Decision

– Consider an algorithm in which doctors propose.

– Hospital ℎ is popular if it received at least 𝑘 proposals, where

𝑘 =

⌊
𝑛

5𝑐 log 𝑛

⌋
(𝑐 is a constant, large enough).

– We will stop the algorithm prematurely at time 𝑇 when there
are exactly ⌊𝑐 log 𝑛/4⌋ popular hospitals.

– Of course, the algorithm might converge to a stable matching
before it happens; however, we will show that a.a.s. it will not
happen.

23



Principle of Deferred Decision

– Consider an algorithm in which doctors propose.

– Hospital ℎ is popular if it received at least 𝑘 proposals, where

𝑘 =

⌊
𝑛

5𝑐 log 𝑛

⌋
(𝑐 is a constant, large enough).

– We will stop the algorithm prematurely at time 𝑇 when there
are exactly ⌊𝑐 log 𝑛/4⌋ popular hospitals.

– Of course, the algorithm might converge to a stable matching
before it happens; however, we will show that a.a.s. it will not
happen.

23



Principle of Deferred Decision

– Consider an algorithm in which doctors propose.

– Hospital ℎ is popular if it received at least 𝑘 proposals, where

𝑘 =

⌊
𝑛

5𝑐 log 𝑛

⌋
(𝑐 is a constant, large enough).

– We will stop the algorithm prematurely at time 𝑇 when there
are exactly ⌊𝑐 log 𝑛/4⌋ popular hospitals.

– Of course, the algorithm might converge to a stable matching
before it happens; however, we will show that a.a.s. it will not
happen.

23



Principle of Deferred Decision

Lemma
For each hospital ℎ, we independently generate a subset
𝐴ℎ ⊆ [𝑛 + 1] of cardinality 𝑘 =

⌊
𝑛/(5𝑐 log 𝑛)

⌋
. We run the

algorithm until it stops prematurely or a stable matching is created.
Let 𝐷ℎ be the set of doctors that proposed to hospital ℎ.

Then, the following property holds: for each unpopular hospital ℎ,
doctors in 𝐷ℎ have ranks from 𝐴ℎ on the list of preferences of ℎ.
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Liking

– If a stable matching is created, then some poor doctor 𝑑 must
have proposed to every single hospital but is still unemployed.

– Most hospitals have 𝑑 not so high on their preference lists so it
is not too surprising that they did hire 𝑑.

– But there are still many hospitals that have 𝑑 quite high on
their respective preference lists; it is unlikely that all of them,
especially unpopular ones, found a better match.
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Liking

A hospital ℎ likes a doctor 𝑑 if 𝑑 is on one of the top ⌊𝑐 log 𝑛⌋
places on the corresponding list of preferences.

Lemma
A.a.s., every doctor is liked by at least 𝑐 log 𝑛/2 hospitals.

– The number of hospitals that like 𝑑 is the binomial random
variable 𝑋 ∈ Bin(𝑛, ⌊𝑐 log 𝑛⌋/(𝑛 + 1)) with expectation
asymptotic to 𝑐 log 𝑛.

– The lemma follows immediately from Chernoff’s bound and
the union bound over all doctors.
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Does the Algorithm Stop Prematurely?

– Regardless whether we stop prematurely or not, there are at
most ⌊𝑐 log 𝑛/4⌋ popular hospitals.

– Fix any doctor 𝑑 and suppose that 𝑑 proposed to all hospitals.

– There are at least 𝑐 log 𝑛/2 hospitals that like 𝑑 so at least
⌊𝑐 log 𝑛/4⌋ unpopular hospitals like 𝑑.

– Which of the hospitals that like 𝑑 become unpopular depends
on many other events so we need to take the union bound over
all possible selections of ⌊𝑐 log 𝑛/4⌋ hospitals out of ⌈𝑐 log 𝑛/2⌉.
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Does the Algorithm Stop Prematurely?

– If an unpopular hospital ℎ that likes 𝑑 is matched with
someone better than 𝑑, then ℎ likes someone from 𝐷ℎ \ {𝑑}.

– ℎ does not like anyone from 𝐷ℎ \ {𝑑} is at least

𝑘∏
𝑖=1

(
1 −

⌊𝑐 log 𝑛⌋
𝑛 − 𝑖

)
=

(
1 − (1 + 𝑜(1))

𝑐 log 𝑛

𝑛

) 𝑘
= (1 + 𝑜(1))𝑒−1/5.

so the probability that we aimed to estimate is at most
1 − (1 + 𝑜(1))𝑒−1/5 < 1/5.
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Does the Algorithm Stop Prematurely?

The probability that all unpopular hospitals that like 𝑑 are
matched with someone better than 𝑑 is at most(

⌈𝑐 log 𝑛/2⌉
⌊𝑐 log 𝑛/4⌋

) (
1
5

) ⌊𝑐 log 𝑛/4⌋
≤ 2⌈𝑐 log 𝑛/2⌉

(
1
5

) ⌊𝑐 log 𝑛/4⌋

= 𝑂(1) ·
(
4
5

) 𝑐 log 𝑛/4

= 𝑂(1) · exp
(
−
𝑐 log(5/4)

4 log 𝑛

)
= 𝑜(1/𝑛),

provided that 𝑐 is large enough.
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Does the Algorithm Stop Prematurely?

By the union bound over all doctors, we get the following.

Lemma
A.a.s., for every doctor there exists at least one unpopular hospital
that is not matched with a better candidate.

Corollary
A.a.s., the algorithm stops prematurely when there are exactly
⌊𝑐 log 𝑛/4⌋ popular hospitals.

Our final task is to show that it takes at least ℓ = ⌊𝑛2/(𝑎𝑐 log 𝑛)⌋
proposals, in total, to reach this situation (𝑎 is a constant, large
enough).
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Final Touch

– Suppose that a doctor 𝑑 proposed 𝑥𝑑 times for a total of∑
𝑑 𝑥𝑑 = ℓ = ⌊𝑛2/(𝑎𝑐 log 𝑛)⌋ proposals.

– The number of scenarios:(
ℓ + 𝑛 − 1
𝑛 − 1

)
≤

(
𝑒ℓ (1 + 𝑜(1))

𝑛

)𝑛
=

(
𝑒𝑛(1 + 𝑜(1))
𝑎𝑐 log 𝑛

)𝑛
≤ 𝑛𝑛 = exp(𝑛 log 𝑛),

slightly too much to apply the union bound over.

– Solution: consider auxiliary scenarios (𝑥̂𝑑)𝑑 in which we
“round 𝑥𝑑 up”.
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𝑠 = ⌈𝑛/(𝑎𝑐 log 𝑛)⌉
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Final Touch
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– If the original scenario (𝑥𝑏)𝑏∈𝐵 makes at least
𝑘 · ⌊𝑐 log 𝑛/4⌋ = (1 + 𝑜(1))𝑛/20 proposals to a set of ⌊𝑐 log 𝑛/4⌋
hospitals, then the auxiliary scenario (𝑥̂𝑏)𝑏∈𝐵 does it too.
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Final Touch

zS Maddendidiarie ... ieme

SI- :
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– If the original scenario (𝑥𝑏)𝑏∈𝐵 makes at least
𝑘 · ⌊𝑐 log 𝑛/4⌋ = (1 + 𝑜(1))𝑛/20 proposals to a set of ⌊𝑐 log 𝑛/4⌋
hospitals, then the auxiliary scenario (𝑥̂𝑏)𝑏∈𝐵 does it too.

– The total number of proposals is comparable:∑
𝑏∈𝐵

𝑥̂𝑏 ≤ (𝑛 + 1) · ⌈𝑛/(𝑎𝑐 log 𝑛)⌉ + 2
∑
𝑏∈𝐵

𝑥𝑏 ≤ (1 + 𝑜(1)) 3ℓ .

32



Final Touch

The advantage is that there are substantially less auxiliary
scenarios than the original ones:∑
𝑧1≥𝑧2≥...

(
𝑛

𝑧1

) (
𝑧1
𝑧2

) (
𝑧2
𝑧3

)
· · · ≤

∑
𝑧1≥𝑧2≥...

(
𝑛

𝑛/2

) (
𝑛

𝑛/2

) (
𝑛/2
𝑛/4

) (
𝑛/4
𝑛/8

)
· · ·

≤
∑

𝑧1≥𝑧2≥...
2𝑛+𝑛+𝑛/2+𝑛/4+...

≤ 𝑛𝑂(log 𝑛) · 23𝑛

= exp(𝑂(log2 𝑛)) · 23𝑛 ,

where 𝑧𝑖 is the number of values of 𝑥̂𝑏 that are at least
2𝑖 ⌈𝑛/(𝑎𝑐 log 𝑛)⌉
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Final Touch

– Fix any set of ⌊𝑐 log 𝑛/4⌋ hospitals and any auxiliary
configuration (𝑥̂𝑏)𝑏∈𝐵 with

∑
𝑏∈𝐵 𝑥̂𝑏 ≤ (1 + 𝑜(1)) 3ℓ ≤ 4ℓ .

– Ignore active doctors that proposed at least 𝑛/2 times; there
are not too many of them so at least 𝑛/40 proposals made to the
selected hospitals have to come from non-active doctors.

– Expose proposals from non-active doctors, one by one;
proposal is made to one of the selected hospitals with
probability at most 𝑐 log 𝑛/(2𝑛).

– The number of proposals that are made to the selected
hospitals can be stochastically upper bounded by the binomial
random variable 𝑋 ∈ Bin(4ℓ , 𝑐 log 𝑛/(2𝑛)) with
𝔼𝑋 = 2ℓ 𝑐 log 𝑛/𝑛 = (1 + 𝑜(1)) 2𝑛/𝑎.
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Final Touch

– Use some “fancy” Chernoff’s bound:

ℙ(𝑋 ≥ 𝔼𝑋 + 𝑡) ≤ exp
(
−𝔼𝑋 · 𝜑

(
𝑡

𝔼𝑋

))
≤ exp

(
− 𝑡2

2(𝔼𝑋 + 𝑡/3)

)
ℙ(𝑋 ≤ 𝔼𝑋 − 𝑡) ≤ exp

(
−𝔼𝑋 · 𝜑

(
−𝑡
𝔼𝑋

))
≤ exp

(
− 𝑡2

2𝔼𝑋

)
,

where 𝜑(𝑥) = (1 + 𝑥) log(1 + 𝑥) − 𝑥, 𝑥 > −1.

– Conclude that the scenario makes at least 𝑛/40 proposals to
the selected hospitals with probability at most 𝑒3𝑛 .

– We are done by the union bound over all auxiliary scenarios
and sets of ⌊𝑐 log 𝑛/4⌋ hospitals.
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Final Touch

– It takes at least ℓ = ⌊𝑛2/(𝑎𝑐 log 𝑛)⌋ proposals to converge to a
stable matching.

– Doctors propose (on average) at least ℓ/(𝑛 + 1) = Ω(𝑛/log 𝑛)
times.

– Similar argument shows that there are at most 𝑂(log 𝑛)
proposals to a given hospital (on average).
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